Direct growth of hollow carbon nanorods on porous graphenic carbon film without catalysts

Chia-Hao Tu a, Ching-Han Wu a, Chen-Hui Chen a, Yi-Chang Li a, Shih-Ting Wang a, Yen-Chih Chen a, Cheng-Hsueh Lu a, Yi-Jyun Cai b, Jarrn-Horng Lin b, Chuan-Pu Liu a,c,d,e,*

a Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
b Department of Materials Science, National University of Tainan, 33 Sec. 3, Shu-Lin St., Tainan 70005, Taiwan
c Center for Micro/Nano Science and Technology, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
d Research Center for Energy Science and Technology, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
e Advanced Optoelectronic Technology Center, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan

A method is developed for growing three-dimensional hierarchic structures of porous graphenic carbon film/hollow carbon nanorods where porous graphenic carbon film is first synthesized followed by growth of carbon nanorods. By annealing an amorphous carbon layer deposited underneath a nickel thin film at elevated temperatures, the porous graphenic carbon film forms on top via carbon diffusion and precipitation from the grain boundaries of the nickel film. The porosity of the graphenic carbon film is determined by the surface voids of the nickel film resulting from grain coalescence during annealing. Hollow carbon nanorods can then be grown on the pore edges of the porous graphenic carbon film by chemical vapor deposition without catalysts. It is speculated that the dangling bonds of the carbon atoms on the pore edges of the graphene layers might be responsible for the nucleation of the hollow carbon nanorods. The microstructures and growth mechanisms of both porous graphenic carbon film and hollow carbon nanorods are characterized and discussed in detail.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since its discovery in 2004 \cite{1}, graphene has attracted increasing attention due to its prominent properties, such as high carrier mobility (~200,000 cm2 V1 s1) \cite{2}, excellent thermal and electrical conductivity \cite{3}, great mechanical strength \cite{4}, as well as high surface area \cite{5}. The sp2-hybridized carbon atoms in two-dimensional (2D) honeycomb lattices are capable of storing and shuttling electrons. Thereby, graphene has been considered for many applications. Carbon nanotubes (CNTs), one-dimensional (1D) graphene-derived materials, have similar properties. Therefore, combining 1D carbon nanotubes with 2D graphene into hybrid composites extends these properties to three dimensions. Three-dimensional (3D) carbon hierarchical nanostructures can be made with multiple functions for application in lithium...
batteries [6], hydrogen storage [7], and supercapacitors [8]. However, previously reported growth methods for 3D carbon nanostructures incorporating CNTs on graphene require catalysts, which are contaminants that are difficult to remove, causing difficulties in further device applications [9,10]. Besides, Niu et al. have been reported that the CNT–graphene composites jointed with metal catalysts will degrade mechanical properties by simulation, and thus, it is highly desirable to synthesize the composites with seamless junctions, only composed of C–C sp² hybrid bonds [11].

CNTs have been grown on other carbon derivatives without catalysts. For example, Takagi et al. grew CNTs on nanodiamond particles, which acted as growth seeds [12]. They proposed a vapor-solid surface-solid (VSSS) growth mechanism, analogous to homoepitaxial diamond growth, in which hydrogen-terminated carbon atoms with sp³ bonds are inhibited and changed to sp² bonds for the growth of CNTs. It has also been reported that multi-walled carbon nanotubes (MWCNTs) can be grown directly on defective graphite surfaces when subjected to oxidation, acid treatment, and laser ablation [13]. These studies prove that catalysts, either metallic or nonmetallic, are unnecessary for CNT growth. Therefore, the present study shows the viability of growing MWCNTs directly from the pore edges of porous graphene to form a MWCNTs/porous graphene 3D hybrid nanostructure without catalysts.

The synthesis of porous graphene has been achieved using polymer building blocks, plasma, electron bombardment, photo-etching, the template method, and chemical etching [14]. These methods usually involve a series of complicated but trivial processes. For example, porous graphene can be synthesized by preparing a template by etching, placing the template on top of graphene, and then applying oxygen etching. In contrast, the present study develops a facile synthesis method for growing porous graphene with tunable porosity in one step.

In this work, we attempted to grow MWCNTs on multilayer graphene without catalysts. The results show successful growth of hollow carbon nanorods (HCNs) on porous graphenic carbon film to form a 3D hierarchical nanostructure, where the porous graphenic carbon film is so called because the as-grown product is characterized by more than 10 graphene layers in an extended 2D form with porous features with reference to [15]. The porous graphenic carbon film is made of multilayers to enhance mechanical strength (a single layer of porous graphene tends to break apart). The porous graphenic carbon film and hollow carbon nanorods are both characterized with their growth mechanisms discussed in detail. The obtained clean 3D all-carbon nanostructures have a large effective surface area, making them attractive for many applications.

2. Experimental procedure

The methods for the synthesis of porous graphenic carbon film and HCNs/porous graphenic carbon film 3D hybrid nanostructures are shown in Fig. 1. First, 3-nm-thick carbon and 300-nm-thick nickel films were deposited sequentially on a SiO₂ substrate by sputtering (Fig. 1a). The SiO₂ layer (about 500 nm thick) was grown on a silicon wafer by thermal oxidation to act as a nickel diffusion barrier. Subsequently, the sample was loaded into a vacuum quartz (10⁻⁶ Torr) tube and heated rapidly to 950 °C for 10 min. Finally, the sample was placed in a low-temperature zone to quench it quickly to room temperature. During annealing, carbon atoms diffuse through the nickel thin film all the way to the surface, and then precipitate on the surface from the grains and grain boundaries of the nickel film as graphenic carbon film during quenching [16], as shown in Fig. 1b. The calculated diffusion rate of carbon atoms at 725 °C is about 1.2 μm per second [17], so the carbon atoms are redistributed over the entire 300-nm-thick nickel film and segregate on the surface through the grain boundaries, as shown in Fig. 1b. Upon annealing at high temperature, large grains grow at the expense of small grains, resulting from Ostwald ripening, leading to void formation in the nickel film, making the film porous. This porous nickel thin film can not only act as catalysts, but a template for the subsequent growth of porous graphenic carbon film. Therefore, the as-grown graphenic carbon film also exhibits porous characteristics (Fig. 1c). For microstructure characterization, the porous graphenic carbon film was transferred to a transmission electron microscopy (TEM) grid or SiO₂ substrate (Fig. 1d). The transfer process is as follows. The sample was first immersed in hydrogen chloride for 1 day to etch away the porous nickel thin film. Then, the hydrogen chloride was soaked out carefully to avoid graphenic carbon film damage, and the remaining hydrogen chloride was diluted with distilled water several times. The graphenic carbon film was kept floating in water for half a
day to minimize the residue of hydrogen chloride. The film was then lifted off with the target substrate. This method does not use a photoresist, which leaves behind some organic contaminations [18].

For the growth of HCNs, porous graphenic carbon film with the substrate was placed in a quartz tube and heated to 850 °C after the tube had been pumped down to a pressure of 10⁻² Torr. Meanwhile, a mixed gas of ethylene and helium (9:1) was injected into the quartz tube at a rate of 40 ml/min. After growth for 30 min, the sample was cooled to room temperature by pure helium. The morphology, bonding configuration, and microstructure of samples were characterized by a scanning electron microscope (SEM, Hitachi SU-8000) equipped with a scanning transmission detector, a micro-Raman spectroscope (Jobin Yvon, Labram HR) with a 514-nm wavelength laser, and TEM (JEOL 2100F), respectively.

3. Results and discussion

3.1. Growth of porous graphene

The structure evolution of the carbon/nickel thin film stack upon annealing was examined. The XRD patterns and Raman spectra are shown in Fig. 2a and b, respectively. After annealing, the (111) peak of face-centered cubic phase in Fig. 2a becomes prominent, suggesting that the nickel film transforms from probably nanocrystalline to textured crystalline. Fig. 2b shows that the amorphous carbon transforms to crystalline graphenic carbon film, as evidenced by three characteristic peaks at ~1350, ~1580, and ~2700 cm⁻¹, corresponding to the D-, G-, and 2D-bands, respectively. The D-band indicates that there are some non-graphitic carbons and disordered structural defects, such as graphene edges and grain boundaries, and the G-band represents the in-plane vibrational mode of sp² hybridized carbon atoms. The 2D-band results from the double resonance of hexagonal lattices in the Raman process, and its shape, width, and position are related to the stacking number of graphene layers. In contrast, the Raman spectrum of amorphous carbon shows a broad band, a mixture of D- and G-band in the absence of 2D-band for not having long-range order. In addition, the as-synthesized porous graphenic carbon film is characterized by a domain size of approximately 25 nm [19], calculated as the ratio of D- to G-band and the full width at half maximum being larger than that of single-layer graphene. The porous graphenic carbon film is turbostratic multilayer graphene stacking instead of single-layer graphene[20].

The SEM images in Fig. 3 further explore the morphology evolution of the film stack after annealing. Fig. 3a clearly shows numerous pores developing in the as-grown graphene, resulting from the diffusion of the 3-nm-thick carbon film through the 300-nm-thick nickel film followed by precipitation. The close-up image in Fig. 3b shows the crystallization of the nickel film with a grain size of ~1.5 μm. Although graphenic carbon film almost covers the porous nickel film, few areas lack film cover. Fig. 3b shows an example of this, where the brighter area in the center region represents no graphenic carbon film cover. The porosity of graphenic carbon film is retained after the film is transferred onto a TEM lacy grid, as shown in Fig. 3c. By operating the transmission mode in SEM, it can be observed that the size of pores is less than 1 μm and that the thickness of graphenic carbon film is non-uniform, as evidenced by the varying contrast (Fig. 3d) [21,22]. The number of graphene layers was confirmed by high-resolution TEM (HR-TEM). Fig. 4a–c, taken from three different sites, and their corresponding selected area electron diffraction (SAED) patterns in the insets reveal that the numbers of layers are 1, 2, and 16, respectively. The graphenic carbon film has turbostratic stacking instead of AB stacking since the diffraction spots arise from independent hexagons for both 16- and 2-layer graphene, which is consistent with the Raman spectra.

During annealing, the 3-nm-thick carbon film can almost dissolve into the 300-nm-thick nickel film since the carbon solubility in nickel at 1000 °C is about ~1 at%, as obtained from the Ni–C phase diagram [17]. During quenching, some carbon becomes trapped inside the nickel film, making the thickness of the as-grown graphenic carbon film less than 9 layers on average, which is in accordance with the TEM results.

3.2. Growth of hybrid nanostructure of HCNs/porous graphenic carbon film

Fig. 5a shows a SEM image of HCNs grown on porous graphenic carbon film being transferred onto a SiO₂ substrate. The HCNs emerge apparently in clusters distributed around pores, with some HCNs still discernible, such as the area marked by
the white circle. However, this sample is impossible to be analyzed further by TEM to gain in depth characterization of the interfaces owing to the difficulty involved in transferring this hybrid nanostructure successfully. Therefore, on another run, HCNs were grown on porous graphenic carbon film being transferred onto a TEM grid. Fig. 5b shows the obtained SEM image taken in transmission mode. Some areas were broken after HCNs growth resulting from the mismatch in the thermal expansion coefficient between the porous graphenic carbon film and the TEM Cu grid. Nevertheless, bundles of HCNs grown along pore edges, as indicated by the white ovals in Fig. 5b, are clearly visible, with much higher density than those grown elsewhere, as exemplified by the white square. Fig. 5c is an enlarged image of the curved carbon nanorods growing out of the pore edges of graphene layers. Not only curved carbon nanorods but also straight ones grow on the
edges of graphene layers, as indicated in Fig. 5d, which shows that the curved carbon nanorods are solid. Two HCNs grown on pore edges were further analyzed by TEM, as shown in Fig. 6a and d, where no metal catalysts are observed on the tip or root of the HCNs. For the two HCNs in Fig. 6a and d, HR-TEM images showing the interface region are shown in Fig. 6b and e, and those of the top of the HCN body are shown in Fig. 6c and f, respectively. These images indicate that the HCNs have a diameter of 40 nm. Fig. 6b and e reveal that the lattice fringes of the HCNs join directly with those of graphene layers. The SAED pattern of the HCN shown in the inset of Fig. 6c displays (0002) spots and (10–10) and (11–20) rings, indicating different chiralities among various shells of the HCN. Besides, the SAED pattern in the inset of Fig. 6d taken from the graphenic carbon film after the growth of HCNs nearby the pore edge displays the 10–10 and 11–20 rings, indicating the graphene layer has grown thicker with crystallinity deteriorated to be highly polycrystalline. We speculate that through the edges of pores of the porous graphenic carbon film, not only HCNs but also extra irregular carbon layers are deposited on top.

It is also worth mentioning that the major difference between this work and the work of Lin et al. [13], they used chemical modified graphite and laser-damaged graphite as the substrate, by which more carboxyl and hydroxyl functional groups may form randomly on the substrate. Contrarily, since the substrate in this work as porous graphenic carbon film was synthesized by solid state diffusion in vacuum, carbon dangling bonds are possible to form at the edges of pores, which would become available as the nucleation sites in the subsequent growth for the growth of HCNs or CNTs at elevated temperature under reactive conditions. Furthermore, due to the presence of different types of carbon residues left on different typed substrate, the chemical-modified graphite tends to induce the growth of multi-walled carbon nanotubes, whereas the porous graphenic carbon film favors for the growth of crystalline hollow and solid carbon nanorods. Finally, the bulk graphite as the substrate in the report of Lin et al., is too thick to be analyzed by TEM. However, the thin film substrate employed in our work offers the opportunity to investigate the microstructure evolution of the substrate before and after the growth of HCNs by TEM.

Unlike the case in the report of Zhu et al., where defects such as seven-membered rings are required to grow MWCNTs on a plain graphene surface [9], the aromatic rings on the
Fig. 7 – Schematic of proposed growth mechanism for HCNs growing on pore edges of graphene layers. (a) Atomic structure of pore edges comprising protruded hexagonal lattices with possibly dangling bonds and split graphene nanoribbon. (b) Carbon radicals decomposed from precursors attaching onto aforementioned features in (a), acting as nucleation sites. Hanging graphene nanoribbon might curl to form tubular structure. (c) Carbon radicals continue to attach onto graphene nanoribbon and extend length of tubular structure. Double-layer graphene film on left shows how HCNs can be formed by twisting multilayer graphene, where black arrows indicate pentagon–heptagon defect pairs, resulting in HCN bending. Red arrow on HCN on right side indicates dangling bonds on wall, which further widens HCN. (A color version of this figure can be viewed online.)

Fig. 6 – TEM analysis of two typical HCNs grown from pore edges of porous graphenic carbon film. (a) and (d) Bright field images of HCNs (b) and (e) HR-TEM images of roots of HCNs in (a) and (d), respectively, with inset in (d) showing the corresponding SAED pattern of the graphenic carbon film after the growth of HCNs. (c) and (f) HR-TEM images of tips of HCNs in (a) and (d), respectively, with inset in (c) showing corresponding SAED pattern.
edges of graphene layers, characterized by many dangling bonds, allow for carbon atoms to attach directly to form HCNs without the assistance of catalysts or imperfect rings [23]. Even if the carbon atoms on the edges are hydrogen-terminated, they are still energetically favorable for the adhesion of carbon atoms, as mentioned in the VSSS growth mechanism [12]. It has been reported that the hydrogen-terminated carbon atoms that form hydrocarbons can be decomposed thermocatalytically [24]. Accordingly, the growth mechanism of HCNs on porous graphenic carbon film sketched in Fig. 7 is proposed with a simplified model of less number of layers in graphene and walls in HCN for clarity. As shown in Fig. 7a, high-temperature growth might result in some aromatic rings with defects extruding on the pore edges or some graphene nanoribbons (GNRs) being split but still connected to the original graphene layers, which act as energetically favorable nucleation sites for the growth of HCNs. Upon further growth of HCNs, as shown in Fig. 7b, some radical species attach onto these sites to extend the length of graphene GNRs, allowing them to twist helically and transform into tubular structures. The radical species, such as carbon atoms, carbon dimers, and trimers, are decomposed thermally from ethylene gas at 850 °C. Afterwards, the radical species continue to attach onto the tubular structure and extend the length of HCNs, as shown in Fig. 7c. In addition, HCNs can be formed directly from multilayer graphene via this route, as shown by left HCN in Fig. 7c for bi-layer graphene and double-walled HCN as an example. The HCNs may contain pentagon–heptagon defect pairs, which account for the bending of the HCNs [25] shown in Fig. 5. Without catalysts, the walls of the HCNs are likely to be composed of imperfect rings, such as pentagon–heptagon defect pairs and point defects, which act as the nucleation sites for the growth of extra walls, as illustrated by the right HCN in Fig. 7c. The walls of HCNs are thus thicker than the graphene layers, as evidenced by the HR-TEM images in Fig. 6.

4. Conclusion

In this work, porous graphenic carbon film was synthesized by a facile method of annealing a carbon/nickel stacked thin film. The nickel thin film acts as a catalyst for the growth of graphene layers and as a template for the formation of porous graphenic carbon film due to the coalescence of nickel grains. The porous graphenic carbon film has multilayers with turbostratic stacking, where the layer number can range from 2 to 16. The domain size of the porous graphenic carbon film is about 25 nm. Furthermore, HCNs can be grown on the porous graphenic carbon film without catalysts to create hybrid nanostructures. The diameter of the HCNs is about 40 nm. The density of HCNs growing on the pore edges is higher than those growing on the plain surface of porous graphenic carbon film, implying that the pore edges of graphene layers can assist the growth of HCNs. The pore edges of porous graphene layers may have more dangling bonds for the growth of HCNs than those in the plain area. Because the growth occurs without catalysts, the imperfect walls of HCNs may contain pentagon–heptagon defect pairs and point defects, resulting in the bending and broadening of HCNs. This 3D hybrid carbon-based nanostructure without catalysts may extend the application of 2D graphene-based devices.

Acknowledgments

The authors would like to thank the National Science Council (NSC) of Taiwan Core Facilities Laboratory for Nano-Science and Nano-Technology in the Kaohsiung-Pingtung Area for access to SEM equipment. Some experiments were performed at the Electron Microscopy Center and the Center for Nanoscale Materials at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under contract no. DE-AC02-06CH11357 by U Chicago Argonne, LLC. This work was financially supported by the Ministry of Science and Technology, Taiwan, R.O.C. (under Grants NSC 101-2221-E-006-131-MY3, NSC 102-2923-E-006-003-MY3, and NSC 101-2911-I-006-517) and the Headquarters of University Advancement at National Cheng Kung University, which is sponsored by the Ministry of Education, Taiwan, R.O.C.

REFERENCES

